手机浏览器扫描二维码访问
函数是很多学生都感到头疼的数学概念,不过大家放心我是不会提出特别复杂的相关概念的。好了,我就开始了。
第一个是概括。概括的现象在所有学科里都有出现,但是在函数中似乎没有表示概括的。由于我孤陋寡闻和学识浅淡,或许不知道数学家早就对函数进行了概括。不过呢,我还是要提出它。没错,就是概括。若函数g(x)=x+1,k(x)=mx+n,其中m和n都不为零,那么k(x)就是g(x)的概括,而g(x)就是k(x)的具体。
由于符号看起来总是有点别扭和不舒服,不如文字直观。那么,接下来我就全部以文字来描述。等价是数学中的重要概念,至于属于哪一学科就是需要查询的事情。为了让结论有说服力,我还是来举例。x关于f的函数值等于x关于g的函数值的平方加上二倍的x关于g的函数值再加上负三,而x关于g的函数还是和我之前举的例子是一样的。把x关于g的函数表达式代入x关于f的函数,经过化简得到一个新的函数表达式。这样,我称x关于f的函数是二阶函数或者说它的阶是二。由于本来就存在一个x关于h的函数等于相同的表达式,则x关于h的函数和x关于f的函数的结果等价的。其实,这就说明函数的阶只是表面的。
既然说到等价,那么等价只有这一种吗?当然不是。等价还有平移等价和对称等价,那么它们是怎么样的呢?x关于g的函数2等于二倍的x加上负三,还是那个x关于g的函数。那么两个函数就是平移等价的。这是什么原因呢?首先它们都是一次函数,函数图像对应的是两条不同的直线。由于直线的斜率相同,两条直线就是平行的。而平行的两条直线除了所在位置不同,其他都是相同的。因此,两条直线对应的函数也是可以看成是等价的。那么,对称等价又是怎么回事呢?这个就留给你们来说吧!核桃似乎知道自己说得有点多,就及时把还没有说完的抛给大家。
对称等价很简单。在一次函数中,只要让两条直线的斜率互为相反数,那么它们就是对称等价的。其实,你也可以看成是旋转。只不过旋转就不一定是等价的了。依然以x关于g的函数为基础,x关于g的函数3是负三倍的x加上一。因而,它们就是互为偏折的。在这里,我要提出一个概念:同元。而上述两个函数就是同元。同元就是两个函数的自变量的最高次方是相同的,否则就是非同元。为了叙述方便,我把自变量的最高次方称为元次。就是说,两个函数的元次相同就是同元。如果函数的元次同为奇或者偶,那么它们的图形具有分形相似。就是说高次函数的图像必然部分包含低次函数的图像。即高低次函数的图像不是高次函数的图像的分形。小尼很自信,也很快就说完了。
我来说说函数的扩展吧!函数可以看成是有序对的集合。既然说到集合,就要说子集。函数是一个集合,自然有子集。子函数就是函数的子集。那么,什么是子函数呢?就是子函数是以函数的各个项中的一个或者多个为函数表达式,总之比原来的函数少一个项。随着函数元次的增大,函数的子函数也会相应增多。
核桃都说了等价,但是没有定义域。只有两个函数的定义域是相同的,即同域。那他们才是完全等价的。否则就是不完全等价的。埃斯皮诺萨也在说着。
我来继续说。系数变换是函数变化的一种方式。在此情况下,就形成了一个交换集。在变换的过程中,函数元次是不会改变的。在一次函数里,系数变换是没有意义的。
函数肯定和坐标系脱离不了关系,而坐标系又是由四个象限决定的。我就问函数图像能否经过四个象限呢?说起图像,我就想到了直线多边形。那么,直线多边形可以是函数的图像吗?不能。因为直线多边形是闭合的,必然出现一个自变量的值对应两个函数值甚至多个。而我们知道函数的定义是一个自变量只能对应一个因变量,就是说一个横坐标的函数值是唯一的。不过,这倒符合映射。只有一次函数的图像永远不会经过四个象限,而其他函数只是部分情况下是会经过四个象限的。
嗯,大家都有点超常发挥。不过,也该结束了。
桃源小巫医 大明:我重生成了朱允炆 开局中奖一亿,我成了资本大佬 王牌团宠:小娇妻又被扒马甲了 魏紫风澹渊 我在异界当兽医 山里来的小帅医 魔王大人竟是我林立 傲娇王爷宠不停魏紫风澹渊 苏辰唐依晨 武炼虚空 贞观憨婿 皇神纪 最强小前锋 魔兽之亡灵召唤 逆袭天师 墨北枭苏小鱼 掌上倾华 这个主角明明很强却异常谨慎 谢瑶楚寒
我是空间的旅人,时间的行者我追逐真理,寻觅起源我行走诸天,求真万界我是传道者,亦是冒险家。另外,我真的很凶,超凶(看封面)!声明1本书尽量走合理认知世界的路线,有自己的观点设定,不喜勿扰!声明2本书中的内容并不真科学,并不全合理,因为没有实际基础,纯属作者菌的蘑菇想法,作者也写不出全无bug的小说。...
左手生,右手死,他是阎罗在世!美人在怀,佳人在抱,他是情圣重生!一个初入都市的江湖少年,凭借逆天医术,从此纵横都市,逍遥花丛!...
小医生蒋飞,正因为诊所生意太差而考虑关门大吉时,却意外被游戏人物附身,从此变得无所不能。不仅医术出神入化,生死人肉白骨,从阎王爷手中抢命就连厨艺琴艺园艺宠物驯养都全部精通!当别人以为这就是蒋飞全部本事时,蒋飞却笑眯眯地将目光看向了那一本本武学秘籍降龙十八掌六脉神剑北冥神功独孤九剑...
新书我家夫人又败家了已发求收藏,古代美食文,么么哒前世,盛夏怨恨家人的无情抛弃,为贺家人那群白眼狼付出所有,最后却落了个草席一裹,抛尸荒山的下场!重生回到悲剧尚未开始,盛夏发誓今生不会再将真心错付!哪怕吃树皮啃草根,她也要留在家人身边,同甘共苦!改写命运!一家人同心协力,走上致富的康庄大道!携手冷面男神...
一个本来庸才的学生,在一次奇遇后,居然成为傲世天才,他发现自己的身世居然是而后面还有天大的阴谋...
穿越成修真世界的一个废柴,那还修你妹的真?一道七彩霞光之后,杨真直接吊炸天了!他看过的功法,直接满品满级,学都学不完!他炼制的丹药,不但起死回生,还能青春永驻!他锻造的武器,上打神王大帝,下捅黄泉幽狱,每一件都让天地颤栗,让神魔退避!我杨真从不装逼,因为我真牛的一批!一群542062672(已满)二群...