121小说

手机浏览器扫描二维码访问

第301章 密码(第1页)

基于聚类的离散化假设我们有一个包含1000个房屋的价格数据的数据集,我们想将价格分成5个簇,以下是离散化方法:首先,随机分配5个中心点。根据每个房屋的价格和这5个中心点的距离,将每个房屋分入距离最近的中心点对应的簇中。重新计算每个簇的中心点,以中心点的坐标作为新的中心点。重复步骤2和步骤3,直到中心点的移动小于某个阈值或达到最大迭代次数。最终得到的5个簇即为我们需要的离散化结果。自适应离散化假设我们有一个包含个商品销售量数据的数据集,我们想将销售量离散化成n个区间,以下是离散化方法:先将所有商品销售量根据大小排序。初始时,将数据集分成n个区间,每个区间保持相等的数据数量。计算每个区间的范围(最小值和最大值),并计算相邻区间的范围的中点,这些中点作为新的分割点。根据新的分割点重新划分区间,如果新的区间与原来的区间相同,则算法停止。否则,重复步骤3和步骤4。最终得到的n个区间即为我们需要的离散化结果。卷积核输出形状卷积神经网络中的卷积层的输出维度计算,可以通过以下公式得出:输出的高度=(输入的高度-卷积核的高度+2*padding)步长+1输出的宽度=(输入的宽度-卷积核的宽度+2*padding)步长+1输出的深度=卷积核的数量这里,padding是指在输入数据周围填充的0的行数或列数(在计算输出大小时有助于保持空间尺寸不变),步长是指卷积核移动的步数。输出的深度直接取决于我们使用的卷积核的数量。输入数据大小为32x32大小单通道图片,在C1卷积层使用6个大小为5x5的卷识核进行卷积,padding=0,步长为1通过6个大小为5x5的卷识核之后的输出是多大尺寸的,怎么用公式计算给定:输入的高度H=32;输入的宽度W=32;卷积核的高度KH=5;卷积核的宽度KW=5;卷积核的数量K=6;步长S=1;PaddingP=0根据上述公式,我们可以计算出卷积后的输出尺寸:输出的高度=(H-KH+2P)S+1=(32-5+2*0)1+1=28输出的宽度=(W-KW+2P)S+1=(32-5+2*0)1+1=28输出的深度=K=6所以,通过6个大小为5x5的卷积核后的输出尺寸为28x28x6。

留出法(HoldoutMethod):基本思想:将原始数据集划分为训练集和测试集两部分,其中训练集用于模型训练,而测试集则用于评估模型的性能。实施步骤:根据比例或固定的样本数量,随机选择一部分数据作为训练集,剩余部分用作测试集。优点:简单快速;适用于大规模数据集。缺点:可能由于训练集和测试集的不同导致结果的方差较高;对于小样本数据集,留出的测试集可能不够代表性。2交叉验证法(Cross-Validation):基本思想:将原始数据集划分为K个大小相等的子集(折),其中K-1个子集用于训练模型,剩下的1个子集用于测试模型,这个过程轮流进行K次,最后将K次实验的结果综合得到最终的评估结果。实施步骤:将数据集随机划分为K个子集,依次选择每个子集作为验证集,其余子集作为训练集,训练模型并评估性能。重复这个过程K次,取K次实验的平均值作为模型的性能指标。优点:更充分利用了数据;可以减小因样本划分不同而引起的方差。缺点:增加了计算开销;在某些情况下,对于特定划分方式可能导致估计偏差。3自助采样法(Bootstrapping):基本思想:使用自助法从原始数据集中有放回地进行有偏复制采样,得到一个与原始数据集大小相等的采样集,再利用采样集进行模型训练和测试。实施步骤:从原始数据集中有放回地抽取样本,形成一个新的采样集,然后使用采样集进行模型训练和测试。优点:适用于小样本数据集,可以提供更多信息;避免了留出法和交叉验证法中由于划分过程引入的变化。缺点:采样集中约有36.8%的样本未被采到,这些未被采到样本也会对模型性能的评估产生影响;引入了自助抽样的随机性。拓展:选择何种数据集划分方法应根据以下因素进行综合考虑:1数据集大小:当数据集较大时,留出法能够提供足够的训练样本和测试样本,而且计算开销相对较小。当数据集较小时,交叉验证法和自助采样法能更好地利用数据。

这章没有结束,请点击下一页继续阅读!

2计算资源和时间限制:交叉验证需要多次训练模型并评估性能,所以会增加计算开销;自助采样法则需要从原始数据集中进行有放回的采样,可能导致计算成本上升。如果计算资源和时间有限,留出法可能是更可行的选择。3数据集特点:如果数据集具有一定的时序性,建议使用留出法或时间窗口交叉验证,确保训练集和测试集在时间上是连续的。如果数据集中存在明显的类别不平衡问题,可以考虑使用分层抽样的交叉验证来保持类别比例的一致性。4评估结果稳定性要求:交叉验证可以提供多个实验的平均结果,从而减少由于随机划分带来的方差。如果对评估结果的稳定性要求较高,交叉验证是一个不错的选择。总而言之,没有一种数据集划分方法适用于所有情况。选择合适的方法应根据具体问题的需求、数据集的大小以及可用的资源和时间来进行综合考虑,并在实践中进行实验比较以找到最佳的划分方式。2、请列举模型效果评估中准确性、稳定性和可解释性的指标。1准确性:准确率(Accuracy):预测正确的样本数量与总样本数量的比例。精确率(Precision):预测为正类的样本中,真实为正类的比例。召回率(Recall):真实为正类的样本中,被模型预测为正类的比例。F1值(F1-Score):综合考虑了精确率和召回率的调和平均,适用于评价二分类模型的性能。2稳定性:方差(Variance):指模型在不同数据集上性能的波动程度,方差越大说明模型的稳定性越低。交叉验证(CrossValidation):通过将数据集划分为多个子集,在每个子集上训练和评估模型,然后对结果进行平均,可以提供模型性能的稳定估计。3可解释性:特征重要性(FeatureImportance):用于衡量特征对模型预测结果的贡献程度,常用的方法包括基于树模型的特征重要性(如GiniImportance和PermutationImportance)以及线性模型的系数。4可视化(Visualization):通过可视化模型的结构、权重或决策边界等,帮助解释模型的预测过程和影响因素。5SHAP值(SHapleyAdditiveexPlanations):一种用于解释特征对预测结果的贡献度的方法,提供了每个特征对最终预测结果的影响大小。这些指标能够在评估模型效果时提供关于准确性、稳定性和可解释性的信息,但具体选择哪些指标要根据具体任务和需求进行综合考虑。

喜欢离语请大家收藏:()离语

爸爸,求你,不要打我了  退婚当天,三崽带我闪婚千亿隐富  将军公主  最强赛亚人传说  仙道衍  我与十位,美女总裁的故事  强撩!暗哄!我怀了全球首富的崽  爱上她的理由  天灾末世小人物囤货带美女跑路了  白昼独行  资深颜控闯荡娱乐圈  生子就变强,我一年365胎  兽世重生,情敌太多狼夫哭唧唧  闪婚后偏执大佬每天狂宠我  抗战之烽火特勤组  西游之白话版  扮演岩王帝君多年后,我穿回来了  盗墓:开局让吴二白暴揍黑瞎子  女魔头只想攻略她师叔  快穿:尤物穿成万人嫌工具人女配  

热门小说推荐
提前登陆三百年

提前登陆三百年

新书从获得奇遇点开始宇宙深处飞来一座浩瀚无垠的大陆,从此整个世界都不一样了。同时陈荣火脑海里还突然出现了一本古书,按照古书的指引,他提前其他人三百年登陆到了新界。同样在书籍的指引下,在新界中,他的左手也变得不一样了。他从地下挖出一颗夜明珠,啪的一声,夜明珠被他捏碎,但是夜明珠的‘夜光属性’却留在了他手里。琢磨了...

斗罗之先天二十级

斗罗之先天二十级

全本免费,新书斗罗无敌从俘获女神开始斗罗之收徒就变强斗罗之酒剑斗罗王圣穿越到了斗罗1的世界之中,在觉醒武魂的那一天,竟然是先天二十级的魂力。看王圣如何组建属于他自己的7怪。当他的7怪与唐三的7怪相遇时,又会是怎样的一个场面?谁强?谁弱?谁才是真正的主角!粉丝群1304623681...

不朽界祖

不朽界祖

元祖破天战诸界,青血染天万古流帝钟敲日震寰宇,一肩担尽古今愁!一个地球小子,得无上传承,他踏遍诸天万界,他会尽亿万天骄!他一点点的寻找地球先辈的足迹,焱灭鸿蒙界,炎帝已成了亘古传说,极道星辰界,秦蒙二字已成了禁忌,九源浑天界,罗城主已化为了不朽雕塑,荒古断天界,荒天帝已消失在万古时空中作者自定义标签豪门位面嚣张重生...

蜀山魔门正宗

蜀山魔门正宗

蜀山有玄门正宗,一家独大。主角修炼的是魔门正宗。群号紫云宫22117110。...

【修真】男人就是鼎炉

【修真】男人就是鼎炉

前世黑莲花白蓁被人在车上动了手脚车祸去世,穿越成了合欢宗女修白千羽,开启了和前世开后宫没什么不同的修仙之路。这篇算是某某宗女修炼手札的同人,但是是否玩游戏对看文没啥影响,文不会收费,大家放心追,女主是自设的无心海王型号。挂是挂了修真的名头,其实本文没有着重写女主初期修炼,主要还是着重她成为女王之后的故事。全文分三部分,第一二部分女主一边双修一边把以前给她使绊子的人给除了,手段稍微有点粗暴残忍,结果奇奇怪怪自称系统的东西出现了,告诉她,她已成为了这条世界线的主人,同时她设计把自己也拱成了修真大陆的无冕之王。第三部分开幕,无冕之王并不是这么好当的,一边要均衡各大势力,挑对自己有用的掌握在手里,一边要处理情人们的修罗场。。。。偶尔,系统还会给她出难题,让她暴打外来入侵者。然而白蓁(千羽)对此表示,挺好玩的,再来点。本文可能微微有点女尊倾向,女主床上小淫娃,床下真女王,没心没肺,快乐加倍。有疑似正宫,但是基本不会出现1v1的情况,女主这么强,配一个男的太亏了(啥?)。预警,女主从目前的伦理道德来讲,确实是渣女,而且吸溜子也没想洗。...

六零俏佳人

六零俏佳人

新书我家夫人又败家了已发求收藏,古代美食文,么么哒前世,盛夏怨恨家人的无情抛弃,为贺家人那群白眼狼付出所有,最后却落了个草席一裹,抛尸荒山的下场!重生回到悲剧尚未开始,盛夏发誓今生不会再将真心错付!哪怕吃树皮啃草根,她也要留在家人身边,同甘共苦!改写命运!一家人同心协力,走上致富的康庄大道!携手冷面男神...

每日热搜小说推荐