121小说

手机浏览器扫描二维码访问

第51章函数(第1页)

函数是很多学生都感到头疼的数学概念,不过大家放心我是不会提出特别复杂的相关概念的。好了,我就开始了。

第一个是概括。概括的现象在所有学科里都有出现,但是在函数中似乎没有表示概括的。由于我孤陋寡闻和学识浅淡,或许不知道数学家早就对函数进行了概括。不过呢,我还是要提出它。没错,就是概括。若函数g(x)=x+1,k(x)=mx+n,其中m和n都不为零,那么k(x)就是g(x)的概括,而g(x)就是k(x)的具体。

由于符号看起来总是有点别扭和不舒服,不如文字直观。那么,接下来我就全部以文字来描述。等价是数学中的重要概念,至于属于哪一学科就是需要查询的事情。为了让结论有说服力,我还是来举例。x关于f的函数值等于x关于g的函数值的平方加上二倍的x关于g的函数值再加上负三,而x关于g的函数还是和我之前举的例子是一样的。把x关于g的函数表达式代入x关于f的函数,经过化简得到一个新的函数表达式。这样,我称x关于f的函数是二阶函数或者说它的阶是二。由于本来就存在一个x关于h的函数等于相同的表达式,则x关于h的函数和x关于f的函数的结果等价的。其实,这就说明函数的阶只是表面的。

既然说到等价,那么等价只有这一种吗?当然不是。等价还有平移等价和对称等价,那么它们是怎么样的呢?x关于g的函数2等于二倍的x加上负三,还是那个x关于g的函数。那么两个函数就是平移等价的。这是什么原因呢?首先它们都是一次函数,函数图像对应的是两条不同的直线。由于直线的斜率相同,两条直线就是平行的。而平行的两条直线除了所在位置不同,其他都是相同的。因此,两条直线对应的函数也是可以看成是等价的。那么,对称等价又是怎么回事呢?这个就留给你们来说吧!核桃似乎知道自己说得有点多,就及时把还没有说完的抛给大家。

对称等价很简单。在一次函数中,只要让两条直线的斜率互为相反数,那么它们就是对称等价的。其实,你也可以看成是旋转。只不过旋转就不一定是等价的了。依然以x关于g的函数为基础,x关于g的函数3是负三倍的x加上一。因而,它们就是互为偏折的。在这里,我要提出一个概念:同元。而上述两个函数就是同元。同元就是两个函数的自变量的最高次方是相同的,否则就是非同元。为了叙述方便,我把自变量的最高次方称为元次。就是说,两个函数的元次相同就是同元。如果函数的元次同为奇或者偶,那么它们的图形具有分形相似。就是说高次函数的图像必然部分包含低次函数的图像。即高低次函数的图像不是高次函数的图像的分形。小尼很自信,也很快就说完了。

我来说说函数的扩展吧!函数可以看成是有序对的集合。既然说到集合,就要说子集。函数是一个集合,自然有子集。子函数就是函数的子集。那么,什么是子函数呢?就是子函数是以函数的各个项中的一个或者多个为函数表达式,总之比原来的函数少一个项。随着函数元次的增大,函数的子函数也会相应增多。

核桃都说了等价,但是没有定义域。只有两个函数的定义域是相同的,即同域。那他们才是完全等价的。否则就是不完全等价的。埃斯皮诺萨也在说着。

我来继续说。系数变换是函数变化的一种方式。在此情况下,就形成了一个交换集。在变换的过程中,函数元次是不会改变的。在一次函数里,系数变换是没有意义的。

函数肯定和坐标系脱离不了关系,而坐标系又是由四个象限决定的。我就问函数图像能否经过四个象限呢?说起图像,我就想到了直线多边形。那么,直线多边形可以是函数的图像吗?不能。因为直线多边形是闭合的,必然出现一个自变量的值对应两个函数值甚至多个。而我们知道函数的定义是一个自变量只能对应一个因变量,就是说一个横坐标的函数值是唯一的。不过,这倒符合映射。只有一次函数的图像永远不会经过四个象限,而其他函数只是部分情况下是会经过四个象限的。

嗯,大家都有点超常发挥。不过,也该结束了。

山里来的小帅医  掌上倾华  魏紫风澹渊  这个主角明明很强却异常谨慎  逆袭天师  谢瑶楚寒  桃源小巫医  苏辰唐依晨  开局中奖一亿,我成了资本大佬  傲娇王爷宠不停魏紫风澹渊  魔王大人竟是我林立  王牌团宠:小娇妻又被扒马甲了  武炼虚空  皇神纪  魔兽之亡灵召唤  最强小前锋  大明:我重生成了朱允炆  我在异界当兽医  贞观憨婿  墨北枭苏小鱼  

热门小说推荐
潜龙

潜龙

6远本是一个普通的学生,但有一天,他忽然成了龙,从此之后,他就开始牛逼起来本书已经上架,求订阅求评论求互动求推荐票求金钻求收藏!给我几分钟,让我们一起见证一个高中生的传奇!各位书友要是觉得潜龙还不错的话请不要忘记向您...

篮坛第一外挂

篮坛第一外挂

林易先是用Crossover在三分线弧顶晃开了防守人的重心,紧接着用山姆高德过掉了补防的阿里扎,哇靠!不看人传球,队友空了!不,队友选择高抛,漂亮的空中接力!等等,怎么有点奇怪呢?因为完成以上动作的是一位七尺大个。这是一段热血沸腾的篮球故事。书友群484028022,欢迎大家进群聊天!...

绝代名师

绝代名师

市二中的金牌老师孙默落水后,来到了中州唐国,成了一个刚毕业的实习老师,竟然有了一个白富美的未婚妻,未婚妻竟然还是一所名校的校长,不过这名校衰败了,即将摘牌除名,进行废校处理孙默的开局,就是要帮助未婚妻坐稳校长之位,让学校重回豪门之列。孙默得到绝代名师系统后,点废成金,把一个个废物变成了天才,在孙默的指导下,学渣...

巫师再临

巫师再临

超凡力量回归,巫师也从历史的尘埃中再度降临,站在超凡力量回归的浪潮顶端,沙兰于尘埃和无数位面之中寻找巫师的真意,总有一天,真正的巫师将再临世间。...

槐夏记事

槐夏记事

本文无cp文案我变绿了,也变强了。槐树精变身人类,不仅要学做人,还要带崽子,还要忙着给自己找对象最重要的是,为什么自己本体那个花坛要拆迁啊啊啊!哭唧唧走上赚钱买地的奋斗路。新书楚河记事求支持。已有完结文青诡记事,丁薇记事孔方世界。谢谢大家的支持,让我们做言情界的泥石流吧!...

颤栗世界

颤栗世界

颤栗世界游戏一开服就出了问题,几十万玩家被困在了游戏之中。残疾人柳乾在进入游戏的时候,合金义肢被误判成了正常手脚,这让他在游戏世界里拥有了合金打造的四肢。一拳能打断一棵树,一脚能踹倒一堵墙。开了这么大的挂,柳乾当然想要好好玩下去,成为这款末日游戏里最强大的存在。玩久了之后,柳乾慢慢发现,颤栗世界似乎并...

每日热搜小说推荐