121小说

手机浏览器扫描二维码访问

第四十九章 杨辉三角(第1页)

杨辉三角形,一目了然,每个数等于它上方两数之和。

研究过《九章》、《缉古》、《缀术》、《海岛》这些算法的楚衍说:“我发现了一个奇特三角,每行数字左右对称,由1开始逐渐变大。”

1050年写过《释锁算术》的贾宪说:“这个三角第n行的数字有n项。”

1261年,写过《详解九章算法》的杨辉说:“这个三角形前n行共[(1+n)n]2个数。”

1303年朱世杰说:“第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。”

1427年,写过《算术的钥匙》的阿拉伯人阿尔·卡西说:“第n行的第m个数和第n-m+1个数相等,为组合数性质之一。”

1527年德国人阿皮亚纳斯说:“每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即C(n+1,i)=C(n,i)+C(n,i-1)。”

1544年,写过《综合算术》的德国人米歇尔.斯蒂费尔说:“这是二项式展开式系数,其中(a+b)n的展开式中的各项系数依次对应三角的第(n+1)行中的每一项。”

斐波那契说:“将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。”

1545年法国的薛贝尔说:“将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^0=1,11^1=1x10^0+1×10^1=11,11^2=1×10^0+2x10^1+1x10^2=121,11^3=1x10^0+3×10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1×10^5=。”

1654年,写过《论算术三角形》的帕斯卡说:“第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。”

这个被欧洲人称之为帕斯卡三角形。

1708年的PierreRaymonddeMontmort说:“斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。”

1730年的亚伯拉罕·棣·美弗说:“将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。”

后来人们也称呼这是中国三角形。

二维的杨辉三角有多项式系数,晶体晶格,单形的点线面或者是四维体,五维体等等这样的有价值的东西。其中是亏格为0的欧拉定理。对图论有重大帮助。对很多等差,甚至一级数列、二级数列等等有重要研究。

那三维的杨辉三角,肯定会有更加重要的信息。

高维的杨辉三角,肯定更加有价值。

或许轻松包括斐波那契数列,包括多亏格多面体的点线面等复杂信息。

或许杨辉三角是任何一个数学的终点。

近下来,就需要解决高维杨辉三角的数列问题了。有没有一种简单的办法来。

其中一个最重要的问题,就是二维的杨辉三角是否可以解决高维的杨辉三角问题?这也意味着,高维的杨辉三角简化成二维的杨辉三角问题。

这样的杨辉三角问题,是不是跟形数有关呢?有关系的话,是不是就变成了形数的问题?

喜欢数学心请大家收藏:()数学心

在下潘凤,字无双  新人驾到  穿到八零,我自带锦鲤系统!  混迹娱乐圈的日子  我一枪一剑杀穿大陆  大明:开局气疯朱元璋,死不登基  重生在宝可梦,我的后台超硬  暗无  快穿之炮灰得偿所愿  我的徒弟不对劲  至尊战皇  穿成商户女摆烂,竟然还要逃难!  玄灵界都知道我柔弱可怜但能打  宗门全是美强惨,小师妹是真疯批  哦豁!虐文炮灰不干了!  永恒大陆之命运  农夫是概念神?三叶草了解一下!  国运:拥有多重身份的我很合理吧  译文欣赏:博伽瓦谭  摊牌了,我爹是绝顶高手!  

热门小说推荐
时空冒险传奇

时空冒险传奇

我是空间的旅人,时间的行者我追逐真理,寻觅起源我行走诸天,求真万界我是传道者,亦是冒险家。另外,我真的很凶,超凶(看封面)!声明1本书尽量走合理认知世界的路线,有自己的观点设定,不喜勿扰!声明2本书中的内容并不真科学,并不全合理,因为没有实际基础,纯属作者菌的蘑菇想法,作者也写不出全无bug的小说。...

重生最强妖兽

重生最强妖兽

系统流爽文古有黑蟒,百年后化腾蛇,千年后变蛟,万年后化龙,可遨游九天十地,统领六合八荒。三千年前,人族仙尊林昊斩妖无数,却遭逆徒暗算,被人族围攻致死。三千年后,林昊重生于一条黑蟒身上,以妖证道,开启了一段逆天化龙之路。书友群565412325...

我的师父是黄蓉破天居士

我的师父是黄蓉破天居士

一觉醒来发现身边多了个没穿衣服的美女,这个美女竟然是金庸笔下的黄蓉。而且还是少女时期的黄蓉。莫名其妙的得到了黄蓉的身心,有些木讷的小人物顿时发生了变化。挨欺负了不用咱出手,有黄MM的打狗棒法帮咱出气。想成为武林高手?没问题。桃花岛武功随便学,打狗棒法随意耍,九阴真经纵横大都市总之有了黄蓉这个伪师父,真老婆之后,一切都变的精彩了!...

君少心头宝,夫人哪里跑

君少心头宝,夫人哪里跑

从我身上下去。男人的声音透着几分无奈和隐忍。我不。少女摇头,双手死死抱住身下的男人。听话,你这样我没法睡。以前我都是趴你身上睡的。那不一样你现在是人。京城杀伐果断,残暴冷血的神秘大当家意外被只小奶猫所救,从此化身猫奴,跌了一众下属的下巴。然而当有一天睡醒发现怀里的小奶猫变成了俏生生的软萌小丫...

都市超级医仙

都市超级医仙

左手惊天医术右手至强武功,携带百年记忆,重生回归都市,这一世,定要纵横无敌执掌一切,登临苍穹之巅!...

猎美玉龙

猎美玉龙

看书名就知道,我们的猪脚究竟要干什么!请耐心看下去,你不会失望的!京华市委书记的儿子荆天,16岁,仗着老子是京华市的一把手,在学校里是个问题学生,回到家却乖的不得了,这个两面少年,无意中从一枚祖传古戒中得到一种神奇的功法,从此之后,他的人生,发生了巨大的变化。学习成绩陡然上升,少女少妇看到他就美眸放光,将市委大院里的RQ收了之后,他便将魔爪伸向了校园,伸向了整个京华市的各个部门,只要他见到的美女,就想方设法归于自己麾下,邪恶而轻松的猎美之旅,充满着令人拍案的奇妙遭遇,是艳遇还是刻意追求?敬请期待...

每日热搜小说推荐