手机浏览器扫描二维码访问
欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”
欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”
卡农说:“假如说1997和615这两个数字。”
欧几里得说:“1997除以615,等于3余出152。”
卡农说:“然后怎么求?”
欧几里得说:“除数除以余数,615除以152等于4余7.”
卡农说:“然后152除以7等于21余5.”
欧几里得接着说:“没错,然后7除以5,等于1余2.”
卡农说:“5除以2,等于2余1.”
欧几里得说:“2除以1,等于2余0.”
卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”
欧几里得说:“所以说,相当于没有最大公约数。”
在以上基础上,后来数学中发展了环的概念,整环R是符合一下接个要求的:
1、A关于加法成为一个Abel群(其零元素记作0);
2、乘法满足结合律:(a*b)*c=a*(b*c);
3、乘法对加法满足分配律:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c;
如果环A还满足以下乘法交换律,则称为“交换环”:
4、乘法交换律:a*b=b*a。
如果交换环A还满足以下两条件,就称为“整环”(integraldomain):
5、A中存在非零的乘法单位元,即存在A中的一个元素,记作1,满足:1不等于0,且对任意a,有:e*a=a*e=a;
6、ab=0=>a=0或b=0。
而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。
喜欢数学心请大家收藏:()数学心
大明:开局气疯朱元璋,死不登基 农夫是概念神?三叶草了解一下! 译文欣赏:博伽瓦谭 快穿之炮灰得偿所愿 我一枪一剑杀穿大陆 永恒大陆之命运 穿到八零,我自带锦鲤系统! 国运:拥有多重身份的我很合理吧 哦豁!虐文炮灰不干了! 至尊战皇 新人驾到 我的徒弟不对劲 暗无 摊牌了,我爹是绝顶高手! 宗门全是美强惨,小师妹是真疯批 玄灵界都知道我柔弱可怜但能打 重生在宝可梦,我的后台超硬 在下潘凤,字无双 穿成商户女摆烂,竟然还要逃难! 混迹娱乐圈的日子
我是空间的旅人,时间的行者我追逐真理,寻觅起源我行走诸天,求真万界我是传道者,亦是冒险家。另外,我真的很凶,超凶(看封面)!声明1本书尽量走合理认知世界的路线,有自己的观点设定,不喜勿扰!声明2本书中的内容并不真科学,并不全合理,因为没有实际基础,纯属作者菌的蘑菇想法,作者也写不出全无bug的小说。...
系统流爽文古有黑蟒,百年后化腾蛇,千年后变蛟,万年后化龙,可遨游九天十地,统领六合八荒。三千年前,人族仙尊林昊斩妖无数,却遭逆徒暗算,被人族围攻致死。三千年后,林昊重生于一条黑蟒身上,以妖证道,开启了一段逆天化龙之路。书友群565412325...
一觉醒来发现身边多了个没穿衣服的美女,这个美女竟然是金庸笔下的黄蓉。而且还是少女时期的黄蓉。莫名其妙的得到了黄蓉的身心,有些木讷的小人物顿时发生了变化。挨欺负了不用咱出手,有黄MM的打狗棒法帮咱出气。想成为武林高手?没问题。桃花岛武功随便学,打狗棒法随意耍,九阴真经纵横大都市总之有了黄蓉这个伪师父,真老婆之后,一切都变的精彩了!...
从我身上下去。男人的声音透着几分无奈和隐忍。我不。少女摇头,双手死死抱住身下的男人。听话,你这样我没法睡。以前我都是趴你身上睡的。那不一样你现在是人。京城杀伐果断,残暴冷血的神秘大当家意外被只小奶猫所救,从此化身猫奴,跌了一众下属的下巴。然而当有一天睡醒发现怀里的小奶猫变成了俏生生的软萌小丫...
左手惊天医术右手至强武功,携带百年记忆,重生回归都市,这一世,定要纵横无敌执掌一切,登临苍穹之巅!...
看书名就知道,我们的猪脚究竟要干什么!请耐心看下去,你不会失望的!京华市委书记的儿子荆天,16岁,仗着老子是京华市的一把手,在学校里是个问题学生,回到家却乖的不得了,这个两面少年,无意中从一枚祖传古戒中得到一种神奇的功法,从此之后,他的人生,发生了巨大的变化。学习成绩陡然上升,少女少妇看到他就美眸放光,将市委大院里的RQ收了之后,他便将魔爪伸向了校园,伸向了整个京华市的各个部门,只要他见到的美女,就想方设法归于自己麾下,邪恶而轻松的猎美之旅,充满着令人拍案的奇妙遭遇,是艳遇还是刻意追求?敬请期待...