手机浏览器扫描二维码访问
函数是很多学生都感到头疼的数学概念,不过大家放心我是不会提出特别复杂的相关概念的。好了,我就开始了。
第一个是概括。概括的现象在所有学科里都有出现,但是在函数中似乎没有表示概括的。由于我孤陋寡闻和学识浅淡,或许不知道数学家早就对函数进行了概括。不过呢,我还是要提出它。没错,就是概括。若函数g(x)=x+1,k(x)=mx+n,其中m和n都不为零,那么k(x)就是g(x)的概括,而g(x)就是k(x)的具体。
由于符号看起来总是有点别扭和不舒服,不如文字直观。那么,接下来我就全部以文字来描述。等价是数学中的重要概念,至于属于哪一学科就是需要查询的事情。为了让结论有说服力,我还是来举例。x关于f的函数值等于x关于g的函数值的平方加上二倍的x关于g的函数值再加上负三,而x关于g的函数还是和我之前举的例子是一样的。把x关于g的函数表达式代入x关于f的函数,经过化简得到一个新的函数表达式。这样,我称x关于f的函数是二阶函数或者说它的阶是二。由于本来就存在一个x关于h的函数等于相同的表达式,则x关于h的函数和x关于f的函数的结果等价的。其实,这就说明函数的阶只是表面的。
既然说到等价,那么等价只有这一种吗?当然不是。等价还有平移等价和对称等价,那么它们是怎么样的呢?x关于g的函数2等于二倍的x加上负三,还是那个x关于g的函数。那么两个函数就是平移等价的。这是什么原因呢?首先它们都是一次函数,函数图像对应的是两条不同的直线。由于直线的斜率相同,两条直线就是平行的。而平行的两条直线除了所在位置不同,其他都是相同的。因此,两条直线对应的函数也是可以看成是等价的。那么,对称等价又是怎么回事呢?这个就留给你们来说吧!核桃似乎知道自己说得有点多,就及时把还没有说完的抛给大家。
对称等价很简单。在一次函数中,只要让两条直线的斜率互为相反数,那么它们就是对称等价的。其实,你也可以看成是旋转。只不过旋转就不一定是等价的了。依然以x关于g的函数为基础,x关于g的函数3是负三倍的x加上一。因而,它们就是互为偏折的。在这里,我要提出一个概念:同元。而上述两个函数就是同元。同元就是两个函数的自变量的最高次方是相同的,否则就是非同元。为了叙述方便,我把自变量的最高次方称为元次。就是说,两个函数的元次相同就是同元。如果函数的元次同为奇或者偶,那么它们的图形具有分形相似。就是说高次函数的图像必然部分包含低次函数的图像。即高低次函数的图像不是高次函数的图像的分形。小尼很自信,也很快就说完了。
我来说说函数的扩展吧!函数可以看成是有序对的集合。既然说到集合,就要说子集。函数是一个集合,自然有子集。子函数就是函数的子集。那么,什么是子函数呢?就是子函数是以函数的各个项中的一个或者多个为函数表达式,总之比原来的函数少一个项。随着函数元次的增大,函数的子函数也会相应增多。
核桃都说了等价,但是没有定义域。只有两个函数的定义域是相同的,即同域。那他们才是完全等价的。否则就是不完全等价的。埃斯皮诺萨也在说着。
我来继续说。系数变换是函数变化的一种方式。在此情况下,就形成了一个交换集。在变换的过程中,函数元次是不会改变的。在一次函数里,系数变换是没有意义的。
函数肯定和坐标系脱离不了关系,而坐标系又是由四个象限决定的。我就问函数图像能否经过四个象限呢?说起图像,我就想到了直线多边形。那么,直线多边形可以是函数的图像吗?不能。因为直线多边形是闭合的,必然出现一个自变量的值对应两个函数值甚至多个。而我们知道函数的定义是一个自变量只能对应一个因变量,就是说一个横坐标的函数值是唯一的。不过,这倒符合映射。只有一次函数的图像永远不会经过四个象限,而其他函数只是部分情况下是会经过四个象限的。
嗯,大家都有点超常发挥。不过,也该结束了。
掌上倾华 最强小前锋 桃源小巫医 逆袭天师 这个主角明明很强却异常谨慎 我在异界当兽医 山里来的小帅医 皇神纪 魔兽之亡灵召唤 魔王大人竟是我林立 武炼虚空 谢瑶楚寒 苏辰唐依晨 大明:我重生成了朱允炆 傲娇王爷宠不停魏紫风澹渊 魏紫风澹渊 王牌团宠:小娇妻又被扒马甲了 贞观憨婿 墨北枭苏小鱼 开局中奖一亿,我成了资本大佬
万人追更,火爆爽文农村小子偶然获得神农传承,从此一飞冲天,成为人中龙。带领大家走上一条致富路。...
一睁眼回到六零年,上一世是孤儿的明暖这一世拥有了父母家人,在成长的过程中,还有一个他,青梅竹马,咋这么腹黑呢!...
陈炎是一个混得极度没出息的大学生,阴差阳错的在阳台上喝着闷酒的时候被一个中年人吓得掉下楼下,醒来的时候却发现是在自己的高中时代。经历了惨败的婚姻和现实的残酷,陈炎决定好好的利用自己机会推倒所有的美女,清纯的学生妹,只知道埋头读书的校花MM,风骚无比的成熟美妇,饥渴了N多年的迷人寡妇。重生了,干那么多大事有什么用!手里掐着钱去糟蹋别人的闺女和老婆才是王道!...
穿越到海贼世界,罗德得到可以抽取天赋能力的神器知识之书。剑斩天地,掌控雷霆,行走空间,信仰之力铸造地上神国!神恩如海,神威如狱。来到这个世界,就注定无敌于世。...
新书我的特效时代上传,求收藏,求推荐!落魄功夫小生陆麟,拥有一台能做出炫酷特效的超级电脑。从此华语影片不在是低成本小制作的代名词。奇幻瑰丽的仙侠世界登上银幕,沉迷华夏网文的外国小哥,不再期待漫威!书友群481993635...
新书宇宙乾坤塔已经发布,可以开宰了第一次工业革命,蒸汽机将大英帝国变成了日不落帝国第二次工业革命,内燃机推动历史的车轮,电灯照亮漆黑的夜晚第三次工业革命,互联网将我们的星球变成了地球村大学生秦毅走运获得了科技塔,掀开了星际工业时代,从此以后太阳系变成了我们的后花园我们在太空之中发展农业兴建太空工厂我们在月...