手机浏览器扫描二维码访问
大家知道我爱玩小游戏,尤其是数字华容道。我只玩到5×5的,6×6的太复杂了。玩这个游戏时,千万不要一直都是直线思维。否则,你很难过关。有一点就是,任何一行一列都不能先全部填满。其实,这个游戏掌握了方法还是很简单的。
好,我来说今天的话题。在学数学时,老师一直让我们数形结合。我对三角形特别感兴趣,也对三角形数有感觉。注意,不是等差数列的那种三角形数。我有个问题,是不是所有满足不等关系的三个数可以任意组合呢?对此,大家有什么看法?核桃问。
当然不是。三角形还有角呢!
埃斯皮诺萨,难道你不知道大角对大边吗?这意思是说三角形的三条边和三个内角一一对应。只要确定了边或者角就可以确定一个三角形。
小尼,确定了三个角就可以确定三条边吗?其实,你错了。边和角有关系,但不是完全对应。事实上,三条边是可以确定一个三角形的。从这一点来说边比角更有意义。回到问题上,是不是所有满足不等关系的三个数都是三角形数呢?我想是的。大家随意说三个满足不等关系的数,我看看是否成立?
埃斯皮诺萨说:我来。12、16、18。
在几何计算器中,计算得到三个角分别是40、60、80。既然是有解的,那么说明它们三个是三角形数。
小尼说:11.11、17.8529、17.1717。
三个角是36、78、64。如此看来,我的结论是正确的。为了防止你们还不信,我输入了13、29、17结果还是有解的。通过这样的结果来说,的确是当三个数满足不等关系后就可以任意组合形成三角形。
核桃说:我有个问题:三角形数组多还是四边形数组多?那么,大家就再次展开讨论吧!
毫无疑问,必定是四边形数。首先根据排列组合,排列的元素越多,排列的结果就越多。其次,四边形比三角形复杂,涉及的情况更多。如果三角形数比四边形数多,就是天理不容了。我们知道从三角形数出发构造四边形数需要有个中间数。而这个中间数从理论上说是有很多个,因此客观上为四边形数组的数量增加了不少。小尼自信十足地说。
不!正因为有中间数的存在,大大约束了四边形数。我觉得四边形数组的数量是略少于三角形数组的数量。
就算如此,四边形数组的数量还是多于三角形数组的。因为排列中元素增加一个,结果就会增加很多个。这种效应会在高一级的多边形中体现出来。
随意给定四个数,我们如何知道它们是不是四边形数?没错,必须要有中间数。任何四个数都有唯一一个中间数。
艾丽西亚,你说的不对吧!四个数不是应该有两个中间数吗,就像四边形有两条对角线。
两个中间数是可以相互确定的。只要有一个中间数确定了,那么另一个中间数也可以确定。
后面还有一些争论,都是些关于细微细节的讨论。我觉得这样下去没有几千字是说不完的,在此就全部省略。后续的争论,大家可以自行脑补。
掌上倾华 魏紫风澹渊 魔兽之亡灵召唤 苏辰唐依晨 墨北枭苏小鱼 傲娇王爷宠不停魏紫风澹渊 魔王大人竟是我林立 最强小前锋 谢瑶楚寒 桃源小巫医 贞观憨婿 这个主角明明很强却异常谨慎 开局中奖一亿,我成了资本大佬 王牌团宠:小娇妻又被扒马甲了 大明:我重生成了朱允炆 武炼虚空 逆袭天师 皇神纪 我在异界当兽医 山里来的小帅医
我是空间的旅人,时间的行者我追逐真理,寻觅起源我行走诸天,求真万界我是传道者,亦是冒险家。另外,我真的很凶,超凶(看封面)!声明1本书尽量走合理认知世界的路线,有自己的观点设定,不喜勿扰!声明2本书中的内容并不真科学,并不全合理,因为没有实际基础,纯属作者菌的蘑菇想法,作者也写不出全无bug的小说。...
中原武林大地北有天芳谱七朵名花,南有美人图十二美人!武林之中,侠女成风,我一出世,无一落空。皇帝本多情,情深意更浓,武林有南北,皇帝就是我。...
吕诚,十五岁之前一直没能修炼出内劲,只能当杂役。但他从小喜欢夜视星空,十年时间,让他的眉心处出现别人所没有的感应力,能让他感知周围的一切事务,并且修炼出内劲,踏入武者行列。从此,这个普通的杂役进阶为天才武者。学心法,进展神速练武技,无师能自通易容变声,惟妙惟肖。在这个武者为尊的世界,最终一步步成为睥睨天下的至尊...
元祖破天战诸界,青血染天万古流帝钟敲日震寰宇,一肩担尽古今愁!一个地球小子,得无上传承,他踏遍诸天万界,他会尽亿万天骄!他一点点的寻找地球先辈的足迹,焱灭鸿蒙界,炎帝已成了亘古传说,极道星辰界,秦蒙二字已成了禁忌,九源浑天界,罗城主已化为了不朽雕塑,荒古断天界,荒天帝已消失在万古时空中作者自定义标签豪门位面嚣张重生...
生死看淡,不服就干。...
新书我的特效时代上传,求收藏,求推荐!落魄功夫小生陆麟,拥有一台能做出炫酷特效的超级电脑。从此华语影片不在是低成本小制作的代名词。奇幻瑰丽的仙侠世界登上银幕,沉迷华夏网文的外国小哥,不再期待漫威!书友群481993635...