手机浏览器扫描二维码访问
埃斯皮诺萨笑着说:这次,我给大家出了一个比较难的话题。我们知道一元二次方程有时会出现无解的情况,而我就在想是不是所有最高次方为奇数的一元方程都是有解的?对此,两位怎么看?
小尼说:一元二次方程没有争议。我们来看看一元四次方程。举个最简单的例子,x∧4+1=0。对于它,我们很容易就可以得出有时一元四次方程是无解的。同理,其他的偶次一元方程也是同样的情况。结论很明显,我就不多说了。接下来,我们看奇次一元方程。还是用个最简单的,x+1=0。也就是说x=-1。我们把方程的右边的数字换成1,就得到了x+1=1。所以,x=0。以此类推,x都有解。至此,我们可以说一元一次方程都有解。同样地,也可以证明一元三次方程也是都有解的。因此,可以得出结论:所有的奇次一元方程都有解而所有的偶次一元方程则部分有解。
艾丽西亚怒道:这本来就只有这些可以说的,偏偏小尼就说完了。不过,我打算说点别的。
所有数都对应不同个数的一元方程、二元方程和多元方程,也就是说不同的数都可以通过其他的数经过或多或少的运算得到。我觉得无理数不是凭空出现的,也可以通过一个方程与其他数建立起联系。
像偶次一元方程在无解时强行求解得到的数就是方程数,当然其中的i就是大名鼎鼎的虚数。我有个大胆的猜想就是虚数与实数一样存在在现实世界里,只是我们从来没有发现而已。而虚数就是虚数空间里的数。我们为什么感觉不到虚数呢,就是因为虚数在虚数空间里。
括号方程是非整数运算思想应用到方程的结果,具体就是括号外面的次方是非整数。这种括号方程我也只是想象而已,对它根本没有任何办法。提到括号方程,我又想到了非整数方程。括号方程的展开式就是非整数方程。如果你们有兴趣,可以研究一下。
小尼和埃斯皮诺萨连忙挥手道:还是要让数学家来解决让人头疼的方程吧?
埃斯皮诺萨在纸上写下5,然后又写出几个方程。看来都是与5有关的。他停笔说道:方程告诉我们每个数都不简单,甚至一个数里就藏着数学所有的秘密。
我知道一元三次方程有求根公式,而一元五次方程就好像没有。如此可见,指数当真是最令人头疼的数学概念了。我知道大家对方程都有点心生胆怯,更别说一元高次方程和多元方程以及所有人避之唯恐不及的括号方程。
为了缓解一个尴尬的气氛,我来说一个笑话吧。在古代,有个国王。他听说数学家为一元四次方程而烦恼就哈哈大笑,并说道:不就是几个小小的数字吗?我的国家如此广大,我什么样的数字没有见过。只要让我来解方程,不出一个瞬间就可以完成了。数学家摇头叹息,而国王自信满满。可是,当国王看到题目居然被吓死了。不是说笑,而是他真的因此而死了。从此,再也没有人敢笑话数学家。事后,人们才知道真相。原来国王觉得根本无法解出方程,就装死来掩盖自己的尴尬。有了教训,国王一看到方程就吓得打哆嗦。
怎样,我的笑话可以吧?
小尼和艾丽西亚不说话,算是默认了。
埃斯皮诺萨见好就收,就宣布散会了。
武炼虚空 桃源小巫医 大明:我重生成了朱允炆 王牌团宠:小娇妻又被扒马甲了 皇神纪 墨北枭苏小鱼 魔王大人竟是我林立 开局中奖一亿,我成了资本大佬 最强小前锋 傲娇王爷宠不停魏紫风澹渊 魏紫风澹渊 逆袭天师 掌上倾华 我在异界当兽医 谢瑶楚寒 贞观憨婿 魔兽之亡灵召唤 山里来的小帅医 这个主角明明很强却异常谨慎 苏辰唐依晨
我是空间的旅人,时间的行者我追逐真理,寻觅起源我行走诸天,求真万界我是传道者,亦是冒险家。另外,我真的很凶,超凶(看封面)!声明1本书尽量走合理认知世界的路线,有自己的观点设定,不喜勿扰!声明2本书中的内容并不真科学,并不全合理,因为没有实际基础,纯属作者菌的蘑菇想法,作者也写不出全无bug的小说。...
中原武林大地北有天芳谱七朵名花,南有美人图十二美人!武林之中,侠女成风,我一出世,无一落空。皇帝本多情,情深意更浓,武林有南北,皇帝就是我。...
吕诚,十五岁之前一直没能修炼出内劲,只能当杂役。但他从小喜欢夜视星空,十年时间,让他的眉心处出现别人所没有的感应力,能让他感知周围的一切事务,并且修炼出内劲,踏入武者行列。从此,这个普通的杂役进阶为天才武者。学心法,进展神速练武技,无师能自通易容变声,惟妙惟肖。在这个武者为尊的世界,最终一步步成为睥睨天下的至尊...
元祖破天战诸界,青血染天万古流帝钟敲日震寰宇,一肩担尽古今愁!一个地球小子,得无上传承,他踏遍诸天万界,他会尽亿万天骄!他一点点的寻找地球先辈的足迹,焱灭鸿蒙界,炎帝已成了亘古传说,极道星辰界,秦蒙二字已成了禁忌,九源浑天界,罗城主已化为了不朽雕塑,荒古断天界,荒天帝已消失在万古时空中作者自定义标签豪门位面嚣张重生...
生死看淡,不服就干。...
新书我的特效时代上传,求收藏,求推荐!落魄功夫小生陆麟,拥有一台能做出炫酷特效的超级电脑。从此华语影片不在是低成本小制作的代名词。奇幻瑰丽的仙侠世界登上银幕,沉迷华夏网文的外国小哥,不再期待漫威!书友群481993635...