手机浏览器扫描二维码访问
余弦定理我们上次讨论过,大家都很熟悉。那么,我就不多说了。我来说说中线定理。首先,有三角形ABC,取BC中点D。于是,就有两边的平方和等于中点所在边的平方的一半加上中线的平方的2倍的和。用公式来表示就是AB2+AC2=12BC2+2AD2。在某次,我用余弦定理推导出来了中线定理。那么,我是怎么做的呢?第一,找到角ADB和角ADC。根据余弦定理可得,cos∠ADB=(BD2+AD2-AB2)2BD·AD,cos∠ADC=(AD2+CD2-AC2)2AD.CD,还有cos∠ADB=cos(180-cos∠ADC)=-cos∠ADC。然后化简就可以得出结论了。那么,接下来大家就选择一种定理进行推导吧!核桃也知道让大家自由发挥。
既然上一次都是应用到四边形里,这次我也这样。有四边形1,它有四条边分别是a、b、c、d和对角线e、f。其中e又分为mn和,而f又分为p和q。若p是e上的中线,就有a2+b2=12e2+p2。由余弦定理可知,e2=a2+b2-。联立方程解得,e2=p2-。从这个等式可以看出,对角线和它的中线的大小关系受到对应两条边和它们夹角的共同限制。这个结论是无论如何无法从作图中得到的,说明了逻辑推导在证明中的优越性。其实,定理的选择很重要。当初,我本来打算利用正弦定理来推导的。但是,我发现正弦定理很难推导出什么简洁的结论。而余弦定理恰恰具备优越的理论工具的特点,让我不费吹灰之力就可以得出这样的结论。有人说,数学很难。其实,这不对。那要看研究什么!如果你想搞出质数的通项公式,自然很难。而我像我一样利用熟悉的定理推导出一个新的规律,其实是不难的。小尼看来是还沉浸在上一次之中,还是在思考四边形。
其实,中线定理可以有推广。中线不是二等分点引出的吗?那么,我也可以作在BC边上做两个三等分点D和E。在这里,不就可以运用中线定理吗?你会说这是两个三等分点,哪里有中线呢?别急,我来讲给你听。BD=DE=EC=13BC,那么BE=DC=23BC。如此,BD=12BE,EC=12DC。因此AD和AE就是两条中线。根据中线定理就可以推导出AB2+2AC2=23BC2+3AE2。你们如果不相信这个结论,可以自己去推导。其实,这个具有普遍意义。也就是说,n等分点线的性质都可以通过中线定理得到。不过,包含的元就有点多。埃斯皮诺萨将推导过程省略了,不过联想还是好的。我觉得这为多边形的对角线被等分提供了规律模板。结论不怎样,但是还是有很大的象征意义的。
我的自然还是利用余弦定理。由于D是BC中点,所以可以得到关于BD和CD的等式。然后联立可以求出AB2-AC2=-。说实话,由余弦定理推导出来的结论一般都不简单。我觉得再多的语言描述都是苍白的,大家就自己理解吧!最后,我想说推导并不是为了推导而推导,而是为以后的讨论打下基础。因此,我希望大家都可以利用空闲时间来复习它们。
那么,明天要谈什么呢?那就要问核桃了。艾丽西亚简单地结尾,并给人一个意想不到的问题。
魔兽之亡灵召唤 我在异界当兽医 魏紫风澹渊 傲娇王爷宠不停魏紫风澹渊 逆袭天师 山里来的小帅医 这个主角明明很强却异常谨慎 皇神纪 谢瑶楚寒 墨北枭苏小鱼 最强小前锋 王牌团宠:小娇妻又被扒马甲了 武炼虚空 桃源小巫医 魔王大人竟是我林立 贞观憨婿 大明:我重生成了朱允炆 掌上倾华 苏辰唐依晨 开局中奖一亿,我成了资本大佬
左手惊天医术右手至强武功,携带百年记忆,重生回归都市,这一世,定要纵横无敌执掌一切,登临苍穹之巅!...
群芳谱ltBRgt乖巧婉约的可爱妹子,美丽柔顺的魔门公主ltBRgt骄蛮倔强的异族天骄,心比天高的武林玉女ltBRgt她们最后都属于谁呢?ltBRgt且看年少英俊的少将军,流落江湖的一番奇遇。ltBRgt本书原名玉笛白马。ltfontgt...
身世坎坷历经沧桑人间情意究竟为何物?妈妈是什么?奶奶是什么?姑姑婶婶又是什么?也许,都是女人罢了。你们给了我们生活的必须,但是她们没有给我们家庭的温暖,因此从理智上我们应该感激你们的,可是感情上很多时候是会出现偏差的。我喜欢熟女喜欢年龄稍大的女人当然是女人我都会喜欢当然是那种好女人...
肉身不破,灵魂不灭,为了回到穿越前,为了再见到他可爱的女儿,不断引起星域乱战,一个不死强者,重启纪元,回归平凡,从此一个无敌奶爸诞生了。续集,正在新书连载着...
18岁那年,我娘被我爹打死,然后我爹娶了个和我一样大的后娘进门。7天后,我娘爬出棺材,敲开了我父亲的门欢迎关注我的微博大家看的时候记得先登陆(QQ号直接登陆就可以了!)然后点一下封面下面的推荐按钮!加更规则200个钻石加一更!单独打赏两个玉佩加一更!一个皇冠加五更!关键词阴娘最新章节阴娘小说阴娘全文阅读...
一代魔君,逆天重生!为复血海深仇,重回都市,掀起血雨腥风!当其锋芒展露的刹那,美女院长,萌呆萝莉,清纯校花,冷艳总裁纷至沓来!...