手机浏览器扫描二维码访问
核桃在纸上画了几个多边形,就说:我们还是要谈对角线。只不过不是谈它的数量,而是分割。对角线分割由分割点实现,分割点其实就是对角线的交点。由于分割点数量的增加,点距就出现了。点距顾名思义就是两个分割点之间的距离。在某种程度上,点距会影响对角线分割分割。
由分割点为顶点的多边形就称为分割多边形,而它和原多边形存在一种对应关系。它们是内含和外延的关系。同比例分割是对角线分割中的一种,分为同向和异向。不管哪种,原多边形的两条边都会体现出这种比例。
我们都知道有直线对角线,但是有谁想过曲线对角线吗?我估计大家没有想过。光是画出曲线对角线就需要花费一定的时间思考作图方法,更何况还要进行观察。而且曲线对角线还有两个方向,那么对角线分割必定更加复杂。曲线对角线和直线对角线其实就是一个圆的弧和弦,运用有关圆的定理就可以。
在做曲线对角线时,要注意弦弧角不能大于对角线与一条边的夹角的一半。否则,曲线对角线就会在外面。
埃斯皮诺萨说:说到对角线分割,我就想到了交形。在对角线多边形中,就有交形。交形是一种特殊的凹凸混合多边形。
小尼说:在四边形里,如果两条对角线满足1:2分割而且1所在的线都在同一边。那么,四边形的其中一边一定是最短边的三倍。当不再1不在同一边时,依据夹角的不同有各种性质。
如果最长的对角线分线a与第二长的对角线分线b的差小于第二长的对角线b与两条相等的对角线c和d分线之差,那么a-c=四边形最短边。b+c=四边形最长边。如果大于,那么a-c=四边形最短边。当四边形的三条对角线分线相等时,四边形最长边是它们的两倍。
在正五边形中,对角线形成的五边形和它是相似的。
假设对角线分割和多边形的边长存在对应关系,那么我们应该如何求解它呢?夹角在这种关系中扮演着重要的角色,它是不得不考虑的因素。正因为夹角的不确定,导致对角线分割与边长的对应关系不固定。由于夹角的不同,可能出现无数种情况。所以,对于求解对应关系的人来说,这就是不利的。
既然有分割点分割了对角线,那么分割比例会是怎样?在分割比中会不会有无理数?统计五边形的对角线分割比是不是可以涉及到所有无理数呢?以分割比为元素得到的集合是否是所有实数的基数?对此,我不知道。但是,我感觉分割比很有秘密。
艾丽西亚说:我猜想分割比集合是实数集合上的一条连续而且没有空白的部分。为什么这么说呢?因为夹角可以有无数种,分割比自然就有无数种。
核桃说:对角线分割是数学中冷门,很少有人研究。由于对角线涉及的知识面广,情况又多变。所以,想要得出正确的结论就是不容易的。既然大家都说了一些,那么今天就如此吧!
大明:我重生成了朱允炆 武炼虚空 墨北枭苏小鱼 逆袭天师 傲娇王爷宠不停魏紫风澹渊 最强小前锋 山里来的小帅医 桃源小巫医 皇神纪 掌上倾华 魏紫风澹渊 这个主角明明很强却异常谨慎 开局中奖一亿,我成了资本大佬 王牌团宠:小娇妻又被扒马甲了 魔兽之亡灵召唤 贞观憨婿 苏辰唐依晨 谢瑶楚寒 魔王大人竟是我林立 我在异界当兽医
左手惊天医术右手至强武功,携带百年记忆,重生回归都市,这一世,定要纵横无敌执掌一切,登临苍穹之巅!...
群芳谱ltBRgt乖巧婉约的可爱妹子,美丽柔顺的魔门公主ltBRgt骄蛮倔强的异族天骄,心比天高的武林玉女ltBRgt她们最后都属于谁呢?ltBRgt且看年少英俊的少将军,流落江湖的一番奇遇。ltBRgt本书原名玉笛白马。ltfontgt...
身世坎坷历经沧桑人间情意究竟为何物?妈妈是什么?奶奶是什么?姑姑婶婶又是什么?也许,都是女人罢了。你们给了我们生活的必须,但是她们没有给我们家庭的温暖,因此从理智上我们应该感激你们的,可是感情上很多时候是会出现偏差的。我喜欢熟女喜欢年龄稍大的女人当然是女人我都会喜欢当然是那种好女人...
肉身不破,灵魂不灭,为了回到穿越前,为了再见到他可爱的女儿,不断引起星域乱战,一个不死强者,重启纪元,回归平凡,从此一个无敌奶爸诞生了。续集,正在新书连载着...
18岁那年,我娘被我爹打死,然后我爹娶了个和我一样大的后娘进门。7天后,我娘爬出棺材,敲开了我父亲的门欢迎关注我的微博大家看的时候记得先登陆(QQ号直接登陆就可以了!)然后点一下封面下面的推荐按钮!加更规则200个钻石加一更!单独打赏两个玉佩加一更!一个皇冠加五更!关键词阴娘最新章节阴娘小说阴娘全文阅读...
一代魔君,逆天重生!为复血海深仇,重回都市,掀起血雨腥风!当其锋芒展露的刹那,美女院长,萌呆萝莉,清纯校花,冷艳总裁纷至沓来!...