手机浏览器扫描二维码访问
无疑,正五边形是具有一定的对称性的。但是,相对于正方形,还是存在一定的对称性破缺。可以说正方形具有的性质,正五边形并不一定具有。但是,它还是有自己独特的性质的。
正五边形的一边的两条高线是一样长的。相邻两角的同是倾倒的相交高线互相平分。由于高线,导致每个内角都剩下一个相同的小角,那么两条高线靠近边的两条线段与边围成的三角形就是等腰三角形。根据相似三角形定理可得出结论。
在正五边形ABCDE中,高线AH交DE于H点,高线EF交AB于F点。EF和AH交于点I。根据上述结论,有EI=FI。由于高线,角ABG=角AEF而且AB=AE,角BAG=角EAF。所以,三角形AEF相似于三角形ABG。可得AG=AF。所以,EG=BF。根据三角形全等可得GJ=FJ,J为BG和EF交点。三边相等即可全等角GAJ=角FAJ,角AGJ=角AFJ。由于高线和正五边形,角AFJ=54度。因此,AJ=JF。
在正五边形中画个圆,不出五边形外。那么,最大的就是内接圆。内接圆与正五边形的五条边都相切,理论上就是圆的面积的极限。
分别以正五边形中点为圆心,半边长为半径画五个圆,那么五个圆必定两两相交。
对了,今天有位特别来宾。他就是尼基塔。尼基塔是美国华裔数学家,她在几何方面有非常深入的研究。提出了四等分点和五等分点,几何排列。她曾说,几何最重要的不是作图,而是代数。如果几何问题不可以变换成代数问题,那么解决起来一定会很困难。她在美国用中文出版了?内接圆几何基础教程?,好评如潮。同时,她也喜欢研究五边形。我刚才说的结论就全部出自她的手笔。虽然是照猫画虎,但是还是有点她的影子。昨天,我把自己的讲话稿拿给她看。她看后,赞不绝口。今天,她打算来到这里鼓励我们继续努力。那么,让我们欢迎她的到来。
尼基塔缓缓走出来,朝着两人挥手。然后,就说:晴空万里,高天无云。做一神仙,悠游天地。
我今天要来讲讲例证法。在这方面,李永乐老师就讲过。说实话,我是完完全全看完那个视频的。例证法看起来不严谨,总让人觉得有些缺乏说服力。但是,我看了他的视频觉得例证法还是有可取之处的。有时,我会作出一些推断。然后,找例子。他提到了恒等式,我想是有思想基础的。我在提出一些关于质数的结论时,总会发现问题。虽然大多数情况例证法不能证明,但是可以证伪的。我们知道证明和证伪只能有一个,所以证明和证伪就是反等价的。在证明(x+1)(x-1)=x2-1,我就觉得很好。
其实,今天不光有我来,还有其他人。你们猜她们是谁?
随着尼基塔话音落下,杜埃尼亚斯和玛格丽塔都回来了。四人寒暄叙旧,时间就慢慢过去了。
大明:我重生成了朱允炆 王牌团宠:小娇妻又被扒马甲了 皇神纪 魔兽之亡灵召唤 魔王大人竟是我林立 这个主角明明很强却异常谨慎 武炼虚空 桃源小巫医 开局中奖一亿,我成了资本大佬 谢瑶楚寒 傲娇王爷宠不停魏紫风澹渊 逆袭天师 魏紫风澹渊 掌上倾华 山里来的小帅医 苏辰唐依晨 贞观憨婿 我在异界当兽医 墨北枭苏小鱼 最强小前锋
我是空间的旅人,时间的行者我追逐真理,寻觅起源我行走诸天,求真万界我是传道者,亦是冒险家。另外,我真的很凶,超凶(看封面)!声明1本书尽量走合理认知世界的路线,有自己的观点设定,不喜勿扰!声明2本书中的内容并不真科学,并不全合理,因为没有实际基础,纯属作者菌的蘑菇想法,作者也写不出全无bug的小说。...
左手生,右手死,他是阎罗在世!美人在怀,佳人在抱,他是情圣重生!一个初入都市的江湖少年,凭借逆天医术,从此纵横都市,逍遥花丛!...
小医生蒋飞,正因为诊所生意太差而考虑关门大吉时,却意外被游戏人物附身,从此变得无所不能。不仅医术出神入化,生死人肉白骨,从阎王爷手中抢命就连厨艺琴艺园艺宠物驯养都全部精通!当别人以为这就是蒋飞全部本事时,蒋飞却笑眯眯地将目光看向了那一本本武学秘籍降龙十八掌六脉神剑北冥神功独孤九剑...
新书我家夫人又败家了已发求收藏,古代美食文,么么哒前世,盛夏怨恨家人的无情抛弃,为贺家人那群白眼狼付出所有,最后却落了个草席一裹,抛尸荒山的下场!重生回到悲剧尚未开始,盛夏发誓今生不会再将真心错付!哪怕吃树皮啃草根,她也要留在家人身边,同甘共苦!改写命运!一家人同心协力,走上致富的康庄大道!携手冷面男神...
一个本来庸才的学生,在一次奇遇后,居然成为傲世天才,他发现自己的身世居然是而后面还有天大的阴谋...
穿越成修真世界的一个废柴,那还修你妹的真?一道七彩霞光之后,杨真直接吊炸天了!他看过的功法,直接满品满级,学都学不完!他炼制的丹药,不但起死回生,还能青春永驻!他锻造的武器,上打神王大帝,下捅黄泉幽狱,每一件都让天地颤栗,让神魔退避!我杨真从不装逼,因为我真牛的一批!一群542062672(已满)二群...